36 research outputs found

    Community Supported Stardust Compendia

    Get PDF
    The Stardust cometary and interstellar collections present unprecedented challenges in sample preparation and analysis. The ensemble of approx.80 tracks and dozens of foil craters from the cometary collection for which we have analyses exhibits a bewildering complexity and diversity of materials. The interstellar collection is even more challenging, because of the extremely low fluence of interstellar dust, a relatively large background of secondary ejecta from impacts on the spacecraft, and the small size of interstellar dust, approximately three orders of magnitude smaller in mass than typical cometary particles. Unlike with the other returned sample collections, characterization of these samples beyond basic photo-documentation is not generally practical at JSC. Even among the other small-particle collections, currently the cosmic dust and Hayabusa samples, SEM/EDX can provide basic chemistry. This is not possible with Stardust particles without destructive and invasive sample preparation. Furthermore, SEM/EDX requires isolating small grains from adhering aerogel. A reliable technique to carry out this task does not exist. Complete characterization of particles requires coordinated analyses using synchrotron and electron-beam microprobes, which do not exist at any one lab. Thus, it was recognized since the Stardust Preliminary Examination in 2006 that characterization of the samples would rely on the worldwide community of Stardust Investigators. Here we announce the development of community-editable, wiki-style Stardust compendia that will support this effort. Our intention is that this will facilitate sample requests by providing basic characterization of tracks. We expect that this will also support comprehensive meta-analyses (global syntheses of analyses) of the collections

    Writing in Britain and Ireland, c. 400 to c. 800

    Get PDF
    No abstract available

    279 - Xanes Studies on UV-Irradiated Interstellar Ice Analogs: A Comparison to STARDUST Samples

    No full text
    We present C-, N-, and O-XANES (X-ray Absorption Near-Edge Spectroscopy) results of organic residues produced in the laboratory from the UV irradiation of astrophysical ice analogs containing H20, CO, CH30H, NH31 in order to mimic processes that may occur in cold icy bodies of the outer Solar System, particularly in comets, Such analyses showed that laboratory-formed organic residues mainly consist of a solid phase and an oily phase. C-XANES analysis of the solid phase suggests a rich distribution of organic functionalities, among which carbonyl groups, C=C bonds, and alcohols are present. Results from N-XANES indicate the possible presence of amide, amine, and nitrile groups, The O-XANES spectra confirmed the a-bearing groups, These results are compared with the XANES spectra obtained from STARDUST cometary samples

    Infections associated with neutropenia and transplantation

    No full text

    Biological significance of agmatine, an endogenous ligand at imidazoline binding sites

    No full text

    Cellular Resistance to Cancer Chemotherapy

    No full text
    corecore